The sperm entry point defines the orientation of the calcium-induced contraction wave that directs the first phase of cytoplasmic reorganization in the ascidian egg.
نویسندگان
چکیده
Ascidians eggs are spawned with their cytoskeleton and organelles organized along a preexisting animal-vegetal axis. Fertilization triggers a spectacular microfilament-dependant cortical contraction that causes the relocalization of preexisting cytoplasmic domains and the creation of new domains in the lower part of the vegetal hemisphere. We have investigated the relationship between fertilization, the cortical contraction and the localization of cytoplasmic domains in eggs of the ascidian Phallusia mammillata. We have also examined the link between this first phase of ooplasmic segregation and the site of gastrulation. The cortical contraction was found to be initiated on the side of the egg where intracellular calcium is first released either by the entering sperm or by photolysis of caged InsP3. The cortical contraction carries the sperm nucleus towards the vegetal hemisphere along with a subcortical mitochondria-rich domain (the myoplasm). If the sperm enters close to the animal or vegetal poles the cortical contraction is symmetrical, travelling along the animal-vegetal axis. If the sperm enters closer to the equator, the contraction is asymmetrical and its direction does not coincide with the animal-vegetal axis. The direction of contraction defines an axis along which preexisting (such as the myoplasm) or newly created cytoplasmic domains are relocalized. Two microfilament-rich surface constrictions, the 'contraction pole' and the 'vegetal button' (which forms 20 minutes later), appear along that axis approximately opposite the site where the contraction is initiated. The contraction pole can be situated as much as 55 degrees from the vegetal pole, and its location predicts the site of gastrulation. It thus appears that in ascidian eggs, the organization of the egg before fertilization defines a 110 degrees cone centered around the vegetal pole in which the future site of gastrulation of the embryo will lie. The calcium wave and cortical contraction triggered by the entering sperm adjust the location of cytoplasmic domains along an axis within that permissive zone. We discuss the relation between that axis and the establishment of the dorsoventral axis in the ascidian embryo.
منابع مشابه
The activation wave of calcium in the ascidian egg and its role in ooplasmic segregation
We have studied egg activation and ooplasmic segregation in the ascidian Phallusia mammillata using an imaging system that let us simultaneously monitor egg morphology and calcium-dependent aequorin luminescence. After insemination, a wave of highly elevated free calcium crosses the egg with a peak velocity of 8-9 microns/s. A similar wave is seen in egg fertilized in the absence of external ca...
متن کاملFunction and characteristics of repetitive calcium waves associated with meiosis
BACKGROUND Internal calcium waves and oscillations are now recognized as universal features of cellular activation, but their exact role remains uncertain. In mammalian and ascidian eggs, a large, sperm-triggered calcium activation wave crosses the egg at fertilization, followed by a series of periodic increases in intracellular calcium concentration ([Ca2+]i). We have previously shown that, in...
متن کاملPolarity and reorganization of the endoplasmic reticulum during fertilization and ooplasmic segregation in the ascidian egg
During the first cell cycle of the ascidian egg, two phases of ooplasmic segregation create distinct cytoplasmic domains that are crucial for later development. We recently defined a domain enriched in ER in the vegetal region of Phallusia mammillata eggs. To explore the possible physiological and developmental function of this ER domain, we here investigate its organization and fate by labelin...
متن کاملExploring the mechanism of action of the sperm-triggered calcium-wave pacemaker in ascidian zygotes.
In ascidians, as in mammals, sperm trigger repetitive Ca2+-waves that originate from cortical pacemakers situated in the vegetal hemisphere of the zygotes. In ascidians, a vegetal protrusion termed the contraction pole (CP) acts as the Ca2+-wave pacemaker, but the mechanism that underlies the generation of a Ca2+-wave pacemaker is not known. Here, we tested four hypotheses to determine which fa...
متن کاملSimulation of calcium waves in ascidian eggs: insights into the origin of the pacemaker sites and the possible nature of the sperm factor.
Fertilization triggers repetitive waves of cytosolic Ca(2+) in the egg of many species. The mechanism involved in the generation of Ca(2+) waves has been studied in much detail in mature ascidian eggs, by raising artificially the level of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] or of its poorly metabolizable analogue, glycero-myo-phosphatidylinositol 4,5-bisphosphate [gPtdIns(4,5)P(2)]. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 121 10 شماره
صفحات -
تاریخ انتشار 1995